Design of photovoltaics for modules with 50% efficiency
نویسندگان
چکیده
A wide variety of photovoltaic cell technologies have shown dramatic performance improvements over the past decade, yet the prospect of a practical module capable of 50% efficiency remains remote. Experimentally achieved singlecell devices have achieved a record efficiency of 28.8% [1], which is close to the theoretical limit of 33.8% for such devices [2]. However, the singlecell limit is far below the fundamental efficiency limit for solar energy conversion of 74.0% for global illumination and 92.8% for direct [2] because a single pn junction can only efficiently convert photons with energy close to the value of its energy bandgap. The best single junction cell will lose more than 40% of the energy in the incident light to transmission of subbandgap photons and thermalization of carriers with photon energy in excess of the bandgap [3]. Spectrum splitting, which divides the solar spectrum into spectral bands of different energy and directs the bands onto multiple subcells with bandgap values matched to the energy of their photon allocation, is a necessary feature of any photovoltaic design capable of achieving >33.8% efficiency. The use of multiple subcells to increase conversion efficiency is well known. In these designs, the subcells are grown monolithically in a stacked configuration and are electrically in series. The incident spectrum is divided among the subcells by sequential absorption, with the top subcells absorbing and converting high energy photons RESEARCH ARTICLE
منابع مشابه
OPTIMAL DESIGN OF DIAGRID MODULES BY PSEUDO RANDOM DIRECTIONAL SEARCH
The present work reveals a problem formulation to minimize material consumption and improve efficiency of diagrids to resist equivalent wind loading. The integrated formulation includes not only sizing of structural members but also variation in geometry and topology of such a system. Particular encoding technique is offered to handle practical variation of diagrid modules. A variant of Pseudo-...
متن کاملUsing Floating Photovoltaics, Electrolyser and Fuel Cell to Decrease the Peak Load and Reduce Water Surface Evaporation
Fossil fuel consumption problems and water crisis are serious dangers. Using renewable energy is a solution to reduce fossil fuel consumption. Photovoltaic is a renewable energy generation method which is abundantly used all over the world. By installation of solar panels on the surface of water, the efficiency of panels increases and in addition, the surface evaporation of water will be reduce...
متن کاملModeling and designing multilayer 2D perovskite / silicon bifacial tandem photovoltaics for high efficiencies and long-term stability.
A key challenge in photovoltaics today is to develop cell technologies with both higher efficiencies and lower fabrication costs than incumbent crystalline silicon (c-Si) single-junction cells. While tandem cells have higher efficiencies than c-Si alone, it is generally challenging to find a low-cost, high-performance material to pair with c-Si. However, the recent emergence of 22% efficient pe...
متن کاملWide-angle planar microtracking for quasi-static microcell concentrating photovoltaics.
Concentrating photovoltaics offer a way to lower the cost of solar power. However, the existing paradigm based on precise orientation of large-area concentrator modules towards the Sun limits their deployment to large, open land areas. Here, we explore an alternate approach using high-efficiency microcell photovoltaics embedded between a pair of plastic lenslet arrays to demonstrate quasi-stati...
متن کاملDesign and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals
Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one-dimensional photonic crystals and in-plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide-area nanostructured multilayers with photonic crystal properties were deposited by a cost-efficient and scalable liquid processing amenable to large-scale fabrication. Their role is...
متن کامل